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CHAPTER 7 -- MOMENTUM

QUESTION  SOLUTIONS

7.1)  A net force F stops a car in time t and distance d.  If you multiply that force
by the time over which it is applied, what will that quantity tell you?

Solution:  When a net force is applied to a body over a given time, the product of the force
and the time gives you what is called the impulse applied to the body.  The impulse, as a
vector, is equal to the amount of momentum change the body experiences due to the
application of that force over that period.  The general relationship, called the impulse

expression, is Fnet ∆ t= ∆p, where the momentum vector p is equal to mv.  (Just to be

clear, the vector called momentum is designed to embody the two parameters that must be
contended with when one wants to determine just how large an applied force must be to
stop a moving body in a given amount of time--those parameters are the body's inertia (its
mass) and how fast it is moving (its velocity) . . . )

7.2)  Your little sister is riding her trike.  She
is moving with velocity 2 m/s.  She wants to
stop, so she lightly engages the brake pedal.
A net force of 10 newtons is applied to the
wheels bringing the trike to a stop in 4
seconds over a distance of 4 meters.   She
decides to experiment (she's a precocious little
thing), so:

a.)  She doubles her trike speed to 4 m/s and tries to stop the trike in twice the
time (8 seconds), distance be damned.  How large a force must she apply?

Solution:  In fact, we really don't need to use the numbers here at all.  All we need to
know is that she doubles her speed and doubles her time.  The force/velocity
relationship that is applicable is the impulse expression.  It states that F1 ∆ t =

m( ∆ v).  From that it seems obvious that if, indeed, we double both the time and the
velocity change, the force will remain the same.

b.)  To make things even more exciting, she gets the trike back up to 4 m/s
again and tries to stop it over twice the distance (8 meters), time be damned. How
large a force must she apply?

Solution:  The force/distance expression we need in this case is the work/energy
theorem.  It states that the work done by a force F over a distance d is equal to the
body's kinetic energy change, or F.d = .5m ∆ v2.  If we double the distance, the left
side of the expression will increase by a factor of two.  If we double the velocity, the
right-hand side will go up by a factor of four.  Doubling both, therefore, will require
the force to double if the two sides of the equation are to remain equal.

c.)  Is there a difference in these two force quantities and, if so, why?
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Solution:  Yes, there is a difference.  The key is most easily seen by starting with the

impulse equation.  We know that F∆ t = ∆ (mv), so when we double the initial
velocity (i.e., double ∆ (mv) ) and double ∆ t , it's pretty obvious that the force will not
change.  The problem arises when we double both the velocity and the distance over
which the force acts.  The reason this is a problem is because doubling the distance
doesn't double the time.  Specifically, if the force, hence acceleration, is constant, the
relationship between d and t is summarized in the kinematic expression (in its
simplest form) d =  .5at2.  Substituting F/m in for a, this becomes d = .5(F/m)t2.
Solving for time yields t = (2dm/F)1/2.  When we put this into our impulse equation
F ∆ t = ∆ (mv), we get F[(2dm/F)1/2] = ∆ (mv) = 0 - mv  (remember, the final velocity is
zero).  Squaring both sides and canceling out the m and F terms yields (lo, and
behold) Fd = .5mv2.  Note that this relationship is the work/energy theorem we used
in drawing our conclusions for Part b . . . and isn't it interesting how the energy and
impulse relationships fit together?

7.3)  Five 300 pound football
players stand at one end of a
relatively light barge (a few
thousand pounds) facing two
200 pound football players at
the other end.  The center of
mass of the barge/player
system is shown in the sketch.  Someone blows a whistle and the five 300
pounders run toward the two terrified, stationary 200 pounders, tackling them in
a heap at the right end of the barge.  Ignoring the frictional effect water would
bring to the system (this would probably be considerable, but ignore it anyway):

a.)  In which direction has the center of mass of the barge/players system
shifted as a consequence of the motion of the five monsters?

Solution:  What really happens when you run?  Your feet push back on the ground
(think about it--if you're in loose dirt, in what direction does the dirt fly as you begin
to run? . . . it flies backwards because you are applying a force to it in that direction)
as the ground pushes forward on you (if you're going to move forward, you'd better
have a force on you in that direction--that force comes from your interaction with the
ground).  So when the behemoths begin to run to the right, they apply a force to the
barge to the left.  Those two forces are equal and opposite (Newton's Third Law . . .
which I will henceforth abbreviate as N.T.L.) and the consequence is that the center
of mass of the system goes nowhere.  Put a little differently, all of the forces along the
line of motion are internal to the system (that is, they are the consequence of the
interaction of the pieces of the system).  Because there are no external forces to
change the system's net motion, the motion of the center of mass remains the same.
It was at rest at the start so it will remain at rest throughout the activity.

b.)  How would this have changed if, when the horde was halfway to the other
end, the two 200 pound players had jumped off the barge (one off each side--not off
the end)?
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Solution:  It's easy to get confused with all of the motion.  The key to deciding if the
initially stationary center of mass changes position is to ask the question, "Are there
any external forces acting on the system in the direction of interest?" In this case,
there aren't any such forces until the 200 pounders hit the water.  That is, the force
the 200 pounders provide to the boat as they jump will be the same as the force the
boat applies to them (ever try to step out of an untied boat and onto a dock--the boat
moves away from the dock as you step toward the dock . . . it can be quite an exciting
experience).  These are internal forces.  The 300 pounders provide a force to the
barge which, once the 200 pounders jump, will accelerate the barge even more than
before, but the boat applies a force to the 300 pounders that is equal and opposite.
The net effect is that the center of mass of the entire system (200 pounders included)
will not vary in its motion (i.e., it'll stay put) until the external force provided by the
water stops the 200 pounders dead in their tracks.  Then, everything changes.

c.)  Would Part b have changed if the 200 pounders had jumped off the end,
not the side?

Solution:  Again, as long as they haven't yet hit the water, all the forces acting on the
system will be internal and the motion of the system's center of mass doesn't change.

7.4)  A car initially sitting still on a road accelerates to velocity v.  The change of
the car's momentum is mv.  The earth's momentum change is (a) zero, (b) less
than mv, (c) mv, (d) more than mv.

Solution:  What allows the car to accelerate is its friction-based contact with the
earth (if it was sitting on a frictionless surface, it wouldn't accelerate at all).  That
means the earth is applying a force to the car over some period of time, and the car is
applying the same force (N.T.L.) to the earth over that same period of time.  The
impulse is the same in both cases, so the change in momentum for each body will be
the same.  Of course, the mass of the earth is so large that the earth's velocity change
will be minuscule.  Nevertheless, the earth's mass times that velocity change will
equal the car's mass times its final velocity.

7.5)  The mass and velocity of a golf ball, and the mass and velocity of a basketball
both multiply out to equal 12 kg.m/s.

a.)  Which will have the larger velocity?
Solution:  The product of mv (i.e., the momentum) is 12 kg.m/s in both cases.  As the
golf ball has the smaller mass, it will have the greater velocity.

b.)  Assuming you exert the same force, which will take more time to stop?
Solution:  The change of momentum is always equal to the impulse F ∆ t.  As the
change of momentum is the same in each case, and as the force is assumed to be the
same in each case, the time required to bring each body to rest will be the same.
This may seem strange until you remember that in this case, the basketball's velocity
is small, relatively speaking.
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7.6)  A rubber ball on a string of length L and a wad
of putty on a string of length L have the same mass.
If both are pulled to the position shown and released
at the same time, both will swing down and strike
the wooden block simultaneously.  Upon impact,
which way, if any, would you expect the block to
topple?  Explain.

Solution:  The block's fall will be governed by
whichever mass imparts the greatest force.  In fact, that will be the rubber ball.  How so?
The putty will strike the block and squish, so it will have a final momentum of
approximately zero (I'll assume the block tips slowly just after the collision) and its
momentum change ( ∆ p) will be approximately 0 - (-mv) = mv, where v is its just before
collision speed.  On the other hand, the rubber ball will hit and bounce.  Having the same
before collision speed as the putty, its in momentum and out momentum will have
approximately the same magnitude (I'm assuming little energy is lost in the collision) and
its momentum change will be approximately -mv - (+mv) = -2mv.  In other words, the
ball's momentum change will be approximately twice that of the putty.  According to the
impulse equation, a body's momentum change will be equal to the net force applied to the
body times the time over which the force acts (i.e., F ∆ t = ∆ p).  If we assume the time of
collision for the ball and wad are approximately the same, then the rubber ball's
momentum change will be almost twice that of the putty. The block will, therefore, feel
approximately twice the force due to the ball than it does due to the putty and, as a
consequence, it should tip to the right.

7.7)  Assuming both are moving with the same speed, which takes more force to
stop, a large truck or a small car?  If you said the large truck, you may be wrong.
How so?

Solution:  A large truck will definitely have greater momentum when compared to a small
car traveling with the same speed.  The trickiness here is in the fact that stopping a
vehicle is not solely a function of force applied, it is also a function of the amount of time
the force is applied (F ∆ t = ∆ p).  If the times of application had been the same for both
vehicles, then the force required to stop the truck would be greater.  But nothing was said
about the time of force application, so nothing can be said about which vehicle will require
the greater stopping force.

7.8)  A guy finds himself sitting motionless on a
cart.  He takes a massive medicine ball (this is like a
very heavy basketball) sitting on the sled and
throws it against the front wall.  It collides and
bounces back to him.  All collisions are elastic (i.e.,
energy is conserved), and assume the wheels are
frictionless.

a.)  What is the motion of the cart, if any, after you throw the ball but before it
hits the front wall?

Solution:  The initial momentum of the system is zero.  All the forces acting in the
system are internal, so you'd expect the system's center of mass to remain stationary.
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Does this make sense?  Sure it does.  When you throw the ball, you apply a force to it
that sends it to the right with positive momentum.  At the same time, the ball
applies a force to you sending you (and the cart) to the left with negative momentum.
The total momentum of the system still adds to zero, and even though you, the cart,
and the ball are all now in motion, the center of mass remains motionless.

b.)  What is the motion of the cart after the ball has hit the front wall but
before he catches it upon its return?

Solution:  There are still no external forces acting, so the system's center of mass will
remain stationary even though the ball, having hit the front wall, will reverse its
direction and move to the left while the cart, having responded to the ball, will also
have reversed its direction and end up moving to the right.  Note:  It might be
tempting to suggest that with a lighter ball, the ball's contact with the wall would
not provide enough force to reverse the cart's direction.  The flaw here is in the fact
that if the ball had been considerably lighter, the initial push would have motivated
it to a considerably higher speed while its action on the cart and driver would have
only minimally accelerated that relatively massive structure.  In that situation, in
other words, the slow moving cart would have been hit by the light but fast moving
ball, and the reversal would still have happened.

c.)  What is the motion of the cart after he catches the ball off the rebound?
Solution:  As you catch the ball, the force it applies to you stops you and the cart
while the force you apply to it stops it.  After the catch, everything is stationary.  As
there have been no external forces acting throughout the motion, the system's center
of mass will not have changed during any of the interchanges . . . and that's the truth
(pthwww).

d.)  Might this be a way to get the sled's center of mass to move to the right?
Explain the usefulness of this approach, if any.

Solution:  It would work only if you wanted the sled to move to the right for an
instant, and at that it would move to the right only after the bounce and before the
catch . . . which is to say, only after having moved to the left first.

7.9)  Someone has built a miniature pistol that fires real bullets.  Assuming the
bullets have the same mass as the pistol, what little problem are you going to run
into when you fire the gun?

Solution:  Oops.  When a bullet is fired, the fixed shell casing in the chamber feels a force
that is backward due to the explosion while the bullet feels a force that propels it forward.
As the forces are internal to the bullet/gun-casing system, momentum has to be conserved.
In other words, under all circumstances, the bullet's momentum will be equal and
opposite the momentum imparted to the gun (via the fixed shell casing inside the gun).
Under normal circumstances, that isn't a problem.  The bullet's momentum is made up of
a small-mass projectile moving at high velocity while the gun's momentum is comprised of
the large-mass gun moving with a small recoil velocity (this is observable as the gun's kick
if you happen to be holding it).  But in our scenario, the mass of the gun and the mass of
the bullet are the same, so the bullet's velocity and the gun's recoil velocity will be the
same and the individual firing the weapon will find him or herself holding an object that
wants to travel at, maybe, three hundred meters per second.  Not surprisingly, this is a
bad idea.
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7.10)  You are wearing a beltless pair of pants while
standing on a frictionless sheet of ice.  There is a table
with a huge cake on it that is just out of reach (see
sketch--it's to scale).  How do you get to the table and the
cake?

Solution:  The temptation is to believe that you could
somehow reach or, if all else fails, fall to the table.  The
problem is that because there are no external forces
available here (the floor is frictionless), the x coordinate of your center of mass has to stay
put.  The only way the upper part of your body can reach out toward the table is if the
lower part of your body extends out away from the table in the opposite direction (in my
country, we call this falling down).  The problem is that as you rotate around your center
of mass, your hands will not extend out far enough to reach the table.  To get to the table,
you must do something that will motivate your center of mass to move toward the table.
In this case, the easiest thing to do is to take your jacket off and throw it away from the
table.  Momentum will be conserved, and as there is material (i.e., your jacket) traveling
toward the left, there must be material (i.e., your body) moving to the right.  The more
mass you can jettison (and the faster you can throw it), the quicker you will proceed
toward the table.

7.11)  A friend inadvertently shoots you with a low powered bee bee gun.  In
theory, which would hurt more, for the bee bee to hit and stick without
penetrating or for the bee bee to hit and bounce?  Explain.

Solution:  According to the impulse expression, hitting and bouncing would require more
force to effect (this assumes that the time of contact would be the same for both
situations).  As a consequence, hitting and bouncing should hurt more.

7.12)  Jack (the idiot) fixes a large fan to his sailboat (note:  he may be an idiot,
but he's a rich idiot) thinking the boat will move forward if he directs the fan
toward the sail.  Will this work?  Explain.

Solution:  Let's assume the fan is attached to the boat.  To motivate air to move to the
right, the fan must provide a force on the air in that direction.  In doing so, the air will
provide an equal and opposite force back on the fan (and boat), pushing it to the left.
When the air hits the sail, it will provide a force to the sail in the direction of the air flow
or, in this case, to the right.  In theory, assuming that air friction hasn't taken too much
of the umph (this is a highly specialized scientific term--an SAT word, in fact--that you
will be tested on before graduation) out of the air stream, the force on the sail should be
approximately the same as the original air-produced force on the fan (and boat), and the
net effect should be nil.  In reality, it is probable that the air hitting the sail will not have
the same amount of umph as the air force on the fan, and if the boat moves at all, it will
move backwards.

7.13)  What makes a padded dashboard in a car safer than a hard dash (yes, it's
the padding, but WHY is that safer)?  Relate this to the idea of impulse.

Solution:  If someone's head collides with a padded dash, the slowing force provided by
the dash will occur over a longer period of time than will be the case with a solid dash.
The impulse expression states that F∆ t = ∆ p.  As the change of momentum is going to
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be the same in both cases, a longer time of collision suggests a lesser force required to
effect the momentum change.  That translates into a better chance of survival.

7.14)  When a ball freefalls, is momentum conserved?  Explain.
Solution:  Whether momentum is conserved or not in a given situation depends upon
what you take to be the system.  If you take the ball by itself to be the system, then the
answer is no (there is an external force--gravity--motivating it to pick up speed, so the
momentum of the single object system will change).  If you take the ball and earth to be
the system, then the answer is yes.  The force on the ball and the force on the earth will
be an action/reaction pair, and with no external forces acting on the system, the total
momentum will not change.  Of course, measuring the earth's momentum change would
be right next to impossible, but in theory, momentum would be conserved.

7.15)  A railroad engine is attached to a very long train.  The engineer wants to
move the train forward.  Why does he first put the train engine in reverse and
push everything backward just a hair before starting forward?

Solution:  The attempt to move forward without first backing up would require the
train's engine to motivate the entire mass of the train to move from rest all at once.  That
would take a huge force acting over a large period of time.  By backing up, the engineer
pushes the couplings between the cars together creating slack between each car.  In that
way, the only thing the engine has to move initially is itself and the first car.  Once that
car's inertia is overcome, the engine can deal with the second car's inertia, then the
third's, etc.  In other words, the engine executes the momentum change in stages.

7.16)  Assuming both collide with the same initial speed and direction, and
assuming both have the same mass and bounce off with the same speed, which
applies a larger force to a wooden block, a rubber ball or a metal ball?

Solution:  The impulse expression is F∆ t = ∆ p.  We know that the momentum change is

the same for both bodies because ∆ mv is the same in both cases.  That means F ∆ t  must
be the same.  Given that product, the ball that feels the greatest force will be the ball
that is in contact with the block for the least amount of time (i.e. has the smallest ∆ t).
That would not be the rubber ball (being rubber, it will give).  In short, the steel ball will
absorb and impart a greater force.

7.17)  Two objects have the same momentum.  One is twice as massive as the
other.  Which requires more work to stop?  Explain.

Solution:  This is nasty.  Momentum is mv, so the object with twice the mass must have
half the velocity if the momenta are to be the same.  In short, we know the ratio of
masses (that was given) and velocities (we got that from the equal momentum
stipulation).  What the work done does in this case is to stop each object.  That is the
same as saying that the work removes enough energy from the system so that each
mass's kinetic energy drops to zero.  But kinetic energy is a function of mass and velocity
squared (KE = .5mv2).  In other words, if the masses were the same (they aren't, but if
they were), an object with twice the velocity of another would have four times the kinetic
energy.  Of course, in this case the object with twice the velocity has half the mass, but
that still leaves it with twice the energy of the other body and twice the work required to
stop it.
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7.18)  Two objects have the same kinetic energy.  One is twice as massive as the
other.  Which will experience the greater momentum change as they come to rest?

Solution:  Having the same kinetic energy means that .5mv2 is the same for both objects.

If one has half the mass, it must have (2)1/2 = 1.4 of the velocity of the other for the
energies to be the same (i.e., its kinetic energy will be .5(m/2)(1.4v)2) = .5mv2 ). That
means its momentum will be (m/2)(1.4v) = .7mv.  As the momentum of the larger mass is
mv, it will have the greater momentum.

7.19)  A system of particles has some non-zero amount of mechanical energy
involved within its assembly.  Could the system's total momentum be zero?  How
about the other way around?

Solution:  Non-zero mechanical energy means the particles are moving, which means
there is velocity involved in the system.  But momentum is a vector.  If the magnitude of
the momentum of the mass moving in one direction equals the magnitude of the
momentum of the mass moving in the opposite direction, the two momentum quantities
will add to zero. In other words, the energy will be non-zero while the net momentum
will be zero.  As far as the other way around, a system with momentum is a system in
which velocities exist.  Kinetic energy is never negative, so there is no way the kinetic
energy of one moving object can add to cancel the kinetic energy of another moving
object.  In short, it isn't possible to have a system with non-zero momentum but zero
kinetic energy.

7.20)  Responding to a very early paper written by Robert Goddard (he would,
with time, become the father of rocket science), a January 1920 editorial printed
in the New York Times chided Goddard for suggesting that space travel was
possible.  The article pointed out that without atmosphere to push against, a
rocket would go nowhere.  Space travel is obviously possible, so how does a rocket
go "without atmosphere to push against?"

Solution:  According to N.T.L., for every action there must be an equal and opposite
"reaction" force (remember, this is a grossly inadequate use of the language--the two
forces act simultaneously, not one after the other, but I digress . . . ).  As the gasses
generated by the combustion of the rocket's fuel expand, the rocket effectively applies a
force on the gas pushing it out the back while the gas applies an equal and opposite force
on the rocket motivating it forward.  On a little different tack (i.e., looking at this from
the perspective of momentum), all of the forces acting on the rocket/fuel system when in
space are internal to the system (remember, there is practically no friction in space).
That means that when gas is ejected at high speed from the rear of the rocket, the rocket
will move forward with an equal amount of momentum so that the total momentum of
the fuel/rocket system is conserved.

7.21)  A frictionless beam is attached by a hinge to a thin
post.  Two blocks of unequal mass have a spring placed
between them.  They are forced together compressing the
spring, then placed on the beam so that the beam balances
without tipping.

a.)  To begin with, where is the center of mass of the system?
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Solution:  If the beam is in equilibrium, which it evidently is, the center of mass
must be over a point of support.  The only support available is the post, so the center
of mass must be over the post.

b.)  The system is then released with the spring accelerating the blocks
outward away from one another.  What will the hinged beam do as the blocks
move outward (i.e., sit still, rotate, what?)?  Use conservation principles to explain
your response.

Solution:  Being a frictionless system, all the forces acting on either block along the
line of motion are internal to the system.  That means the total momentum of the
system will remain conserved and the center of mass will continue in whatever motion
it had before the uncorking.  As it was originally at rest, the center of mass will
remain over the post and the hinged beam will stay stationary.

7.22)  Standing behind a jet engine, you register a force F due to the wind velocity
produced by the jet.  If the wind velocity doubles, how will the force change?

Solution:  Think about what's happening to the air particles hitting you.  The force you

apply to stop them in time ∆ t will equal F ∆ t.  From the impulse expression, that will
also equal the change of their net momentum, or m ∆ v.  If the wind velocity doubles to
2v, the amount of mass that hits you will also double to 2m and the new momentum
change will become (2m)(2 ∆ v).  In other words, assuming ∆ t remains the same, the
force you must apply to them to bring them to a stop should increase by a factor of four.
By N.T.L., the amount of force you apply to the air will be equal and opposite to the force
the air applies to you, so the new force you will feel will be 4F.

7.23)  A woman initially standing still on a frictionless ice patch pushes a box that
is three times her mass.

a.)  After the push, how will her momentum compare to the box's momentum
(i.e., the same, her momentum is less, her momentum is more, what?)?

Solution:  The only forces acting within the system are internal (she's pushing on
the box, the box is pushing on her), so momentum will be conserved.  As the initial
momentum in the system was zero (nothing was moving), the magnitude of her
momentum and the magnitude of the box's momentum have to be the same after the
push.  As vectors, each momentum will be opposite in direction.

b.)  Explain your response to Part a using the idea of impulse.
Solution:  Impulse is related to the force applied and the time over which it is
applied.  In this case, the impulse on each body is the same (same force due to
N.T.L. and same time of application due to their contact with one another).  But
impulse is also equal to the momentum change of an object.  As both objects started
from rest, equal and opposite momentum changes imply that both final momenta
will be the same.

c.)  For the situation, how will their energies compare?  Explain using the
idea of work.
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Solution:  If the momenta are the same but the
masses different, then their velocities will be
different.  This means their final kinetic energies
are different with the more massive (but slower)
object having the least kinetic energy.  One
might think that this would be impossible.  After
all, it was concluded that the force each
experiences is the same.  The difference is that
the distance over which each force is applied
differs.  Think about it.  The more massive object
will move less during F's application while the

less massive object will move more.  The work done on the two will not be the same
which means the kinetic energy changes will not be the same.

7.24)  Which would you prefer to tackle, a 100 kg (220 lb) football player running
at 5 m/s or a 50 kg (110 lb) football player running at 10 m/s?  Explain.

Solution:  Both have the same momentum (500 kg.m/s).  The problem is that both don't

have the same kinetic energy.  The little guy has kinetic energy of .5(50 kg)(10 m/s)2 =

2500 newtons while the big guy has kinetic energy of .5(100 kg)(5 m/s)2 = 1250 newtons.
Clearly the smaller, faster guy is the one to stay away from (in fact, I know this from
personal experience having made the mistake of running into just such a fellow during a
freshman football game I was playing in when I was in high school--it was a very painful
lesson).

7.25)  There are two graphs to the right that
show the momentum versus time of two
independent carts.  What would the FORCE
VERSUS TIME graph look like for each cart?

Solution:  If the area under a FORCE VERSUS
TIME graph during a differential time interval
dt is equal to the differential change of
momentum dp at a given instant (i.e., if Fdt =
dp), then the slope of a MOMENTUM VERSUS
TIME graph (i.e., d p/dt) will equal the force
being applied at a given instant.  For cart 1,
that will be a negative constant.  For cart 2, that
will start out as zero (the momentum isn't
changing so the force is expected to be zero), increase suddenly to a constant positive
value, then decrease back to zero.  Note that the momentum vector changes direction
when p = 0 (i.e., when the body stops).  This has no special significance here.  It means
only that the force was applied long enough to stop the motion, then get the body moving
back in the opposite direction.  The FORCE VERSUS TIME graphs are shown to the
right.

7.26)  Would you prefer to be hit by a 8800 pound truck moving at 10 mph, or a
marble moving with the same momentum?
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Solution:  Frankly, I'd prefer neither, but assuming the creator of this problem (oops, I
guess that's me) wants an answer, we'll have to think about this.  88 ft/sec (round it off to
90 ft/sec) is approximately equal to 60 mph, so 10 mph is approximately 15 ft/sec.  As a
meter is approximately a yard, and as 15 ft/sec is 5 yards/sec, the truck's velocity will be
approximately 5 m/s.  As a 2.2 pound weight is comprised of one kilogram of stuff, our
8800 lb truck has an MKS mass of (8800 lbs)/(2.2 lbs/kg) = 4000 kg.  That means the
truck's momentum is mv = (4000 kg)(5 m/s) = 20,000 kg.m/s.  Let's assume the marble's
mass is 10 kg (that's a honking big marble, but assume that's what we are dealing with).
If its momentum is 20,000 kg.m/s, the magnitude of its velocity must be v = p/m = (20,000
kg.m/s)/(10 kg) = 2000 m/s.  Getting hit by a truck moving at 5 m/s isn't going to be a fun
experience, but getting nailed by a small, hard, 10 kg ball moving at 2000 m/s is going to
do a lot more damage . . . assuming the truck doesn't simply run you completely over.  And
with that happy, Halloween thought (editorial note:  I'm typing this up on the last day in
October), I bid you adieu.

7.27)  And the last, dying gasp:  The momentum of a 1 kg ball moving straight
upward is 12 kg.m/s.

a.)  What will its momentum be 1 second later?
Solution:  Momentum change is simply equal to the net external force acting on the
system times the time over which the net force acts.  In this case, gravity (-mg) is
the only external force acting.  As such, F ∆ t over a one second interval equals [m(-

g)] ∆ t = (1 kg)(-9.8 m/s2)(1 sec) = -9.8 kg.m/s.  That is the momentum change over the
interval.  As the original momentum was 12 kg.m/s , the new momentum will be the
old momentum added to the momentum change over that one second interval will be
12 kg.m/s + (-9.8 kg.m/s) = 2.2 kg.m/s.

b.)  Will the momentum 5 seconds later simply be 5 times the solution to
Part a?  Explain.

Solution:  What will be 5 times larger over the 5 second period will not be the final

momentum but rather the momentum change.  That is, ∆ pnew = 5(-9.8 kg.m/s) = -49

kg.m/s.  The new momentum will be the initial momentum added to the momentum
change, or pnew = 12 kg.m/s + (-49 kg.m/s) = -37 kg.m/s.
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7.28)
a-i.)  The y component of momentum before the collision is directed

upward while the y component of momentum after the collision is directed
downward.  Clearly, momentum in the y direction is not conserved through
the collision.  This is due to the fact that the force at the ceiling is large
enough to change the ball's motion over a minuscule amount of time.

a-ii.)  Even if friction was acting in the x direction during the collision,
the frictional force would be small enough and would be applied over a
small enough time to allow the momentum-change during the collision to be
negligible.  As such, momentum is conserved in the x direction through the
collision.

b.)  As the velocity-magnitude is the same just before and just after the
collision, energy was not lost and the collision must have been elastic.

c.)  The impulse absorbed by the ceiling as a consequence of the ball's
collision with it will be equal and opposite to the impulse received by the
ball from the ceiling.  The ball receives no impulse in the x direction (its
momentum in that direction is the same before as after the collision) but
does receive a change of momentum ∆ p in the y direction.  Noting that the
ball's initial momentum in the y direction (i.e., p1,y) is upward (i.e., positive)
and its final momentum is downward (i.e., negative), we can write:

∆ py = p2,y - p1,y
        = (-mv2 cos 30o) - (+mv2 cos 30o)

        = -2(  m         v2    cos 30o)
        = -2(.4 kg)(11 m/s) (.86)
        = -7.62 nt.sec.

If the ball's impulse is -7.62 nt.sec, the ceiling's impulse will be +7.62 nt.sec
in the y direction.  This makes sense as the ball's force on the ceiling will be
upward, hence the positive sign on the impulse applied to the ceiling.

d.)  The force the ceiling applies to the ball is (-3200 nt)j:

  F ∆ t = ∆ p = -7.62 j nt.sec
     ⇒      ∆ t = ∆ p/F

       = (-7.62 j nt.sec) / (-3200 j nt)
       = 2.4x10-3 sec.
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headed ball
  (m  v     )

m  v    sin 0
b in

incoming ball
    (m  v    )

m  v    cos 0
b in

b in

b out

7.29)  Assuming that player #1 is the 60 kg kid and assuming the runners
are moving in the x direction:

a.)  p1,x = (60 kg)(10 m/s) = (600 kg.m/s)

  p2,x = (120 kg)(5 m/s) = (600 kg.m/s).

Both players will have the same amount of momentum.

b.)  KE1 = (1/2)m1v1
2 = .5(60 kg)(10 m/s)2 = 3000 joules

  KE2 = (1/2)m2v2
2 = .5(120 kg)(5 m/s)2 = 1500 joules.

The players have different amounts of energy.

c.)  Energy is what can hurt you.  Energy is directly proportional to the
mass of the moving object, but it is also directly proportional to the
SQUARE of the object's velocity.  The lesser amount of energy will be
imparted by the larger player moving at the slower speed.  It should be
noted that although it may be more blessed to give than receive, both
parties are going to hurt from the collision (Newton's third law--for every
action there is an EQUAL and opposite reaction).  Both players will feel the
same force.  The trick, assuming you want to play a sport predicated on the
desire to kill someone, is to make the other guy absorb his blow in a more
tender place than where you receive yours.  That is, your head impacting
his knee is not the way to go.

7.30)  The sketch shows the incoming and
outgoing ball, complete with momentum
magnitudes and momentum components.

a.)  It is easiest to do problems like
this by first writing out what's happening
in the x direction, then writing out the
momentum equation for what's happening
in the y direction.  Subtracting the balls
incoming momentum from its outgoing
momentum in both directions yields the
change of momentum in both directions.
Sooo . . .

x direction:

∆ px = pout,x  -      pin,x
       = (mv2)  - (-mv1sin θ )
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       = [(.5 kg)(18 m/s) + (.5 kg)(25 m/s)(sin 30o)]
           = 15.25 kg.m/s.

y direction:

     ∆ py = pout,y  -   pin,y
       = (0)  - (-mv1cos θ )

       = (.5 kg)(25 m/s)(cos 30o)
           = 10.83 kg.m/s.

As a vector, ∆ p = (15.25i + 10.83j) kg.m/s.

b.)  The relationship between force, change of momentum, and time is
wrapped up in the impulse equation.  Specifically for the ball:

F = ∆ p/ ∆ t
    = (15.25i + 10.83j) / (.08 sec)
    = (190.6i + 135.4j) nts.

This will be equal and opposite the force on your head (N.T.L.).
Note that this is a considerable amount of force.  Its magnitude is 270

newtons, or approximately 50 pounds.  Also, note that the longer the ball is
in contact with the head, the smaller the force is.  The moral: from the point
of view of your head, it is better to play with an under-inflated ball than an
over-inflated ball.

7.31)  The bum applies a force to the
car; the car applies a force to the bum.  As
long as the forces are in the direction of the
car's motion, all the forces in the direction of
motion will be internal and momentum will
be conserved (note that the velocities are all relative to the stationary track).

a.)  Assuming the car is moving in
the x direction, the bum's mass is mb,
the car's mass is mc, the initial velocity
of both the bum and the car is v1 in the
+x direction.  After the bum starts
running, the final velocity of the car
(relative to the ground) is vfc and the final velocity of the bum RELATIVE
TO THE GROUND is vfc + 5 m/s:
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           CAR

v  - 5 m/s
fc

∑ pinit     =           ∑ pfinal
mbv1 + mcv1 = mb(vfc + 5 m/s) + mcvfc

⇒    vfc = [mbv1 + mcv1 - mb(5)]/[mb + mc]
= [(60 kg)(15 m/s) + (800 kg)(15 m/s) - (60 kg)(5 m/s)]/[60 kg + 800 kg]
= 14.65 m/s.

(It wasn't requested, but this means that vb = vfc + 5 m/s  = 19.65 m/s).

Does this make sense?  Sure it does.  The bum pushes off the car making
himself go faster.  In doing so, he slows the car just a bit.

b.)  With the bum running opposite
the direction of the car, the bum's final
velocity relative to the car is vfc - 5 m/s.
Following the same steps used in Part a:

∑ pinit      =        ∑ pfinal
      mbv1 + mcv1 = mb(vfc - 5 m/s) + mcvfc

⇒     vfc = [mbv1 + mcv1 + mb(5)]/[mb + mc]
= [(60 kg)(15 m/s) + (800 kg)(15 m/s) + (60 kg)(5 m/s)]/[60 kg + 800 kg]
= 15.35 m/s.

(Again, this means that vb = vfc - 5 m/s  = 10.35 m/s).

Does this make sense?  Again, it does.  The bum pushes off the car
which makes himself go slower relative to the ground.  In doing so, he forces
the car ahead.

c.)  As the bum runs in a direction perpendicular to the car's motion
(say, in the y direction), nothing changes in the x direction--the car's
momentum stays the same.  Additionally, because there is an external force
being provided by the tracks on the train, momentum is NOT conserved in
the y direction as the bum picks up speed.

d.)  Energy before:

KE bef = (1/2) mbv1
2 + (1/2)mcv1

2

 = .5(60 kg)(15 m/s)2 +  .5(800 kg)(15 m/s)2

 = 96,750 joules.
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v  = 240 m/so

0 = 60o
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AFTER
v  = 260 i m/s
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x2

m/3
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v  = -v  i  + v  jy

m

KE aft = (1/2) mb(vfc + 5)2 + (1/2)mcvfc
2

 = .5(60 kg)(19.65 m/s)2 +  .5(800 kg)(14.65 m/s)2

 = 97,433 joules.

Where did the extra energy come from?  The bum did work, burning
chemical energy in his muscles as he exerted himself.  Some of that energy
showed itself as kinetic energy.

7.32)  A sketch of the situation is shown below:

a.)  Although there is gravity acting in the y direction, the explosion
happens so quickly (i.e., ∆ t is so small) that momentum will be "conserved
through the explosion" in all directions.  Writing out momentum
considerations in both the x and y directions, and noting that the signs in vx
and vy are unembedded, we can write:

--In the x direction:

  ∑ pbefore,x        =           ∑ pafter,x
m(240 cos 60o) = [(2/3)m] (260) + [(1/3)m](-vx)

  ⇒     vx = 160 m/s.

Note:  This is the magnitude of the x component of the velocity.

--In the y direction:

  ∑ pbefore,y       = ∑ pafter,y
         m(240 sin 60o)   =   [(1/3)m](vy)

  ⇒    vy = 623.5 m/s.
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As a vector, final velocity of the second piece is, then,

v2 = (-160i + 623.5j) m/s.

The magnitude of this vector is 643.7 m/s at an angle of 104.4o.

b.)  With m equal to 30 kg, the amount of chemical energy converted to
kinetic energy is equal to the increase of kinetic energy (i.e., ∑ KE).  This is:

∆ KE =                      KEf                          -       KEo
= [(1/2)(2/3)mv1

2 + (1/2)(1/3)mv2
2] - [(1/2)mvo

2]

= .5[.67(30 kg)(260 m/s)2 + .33(30 kg)(643.7 m/s)2 - (30 kg)(240 m/s)2]
= 1.87x106 joules.

This may be an unreasonable figure for a typical explosion, but what do you
want from an off-the-wall problem?

7.33)  This is a one-dimensional collision problem in which momentum is
conserved "through the collision."  That means:

∑ pbefore = ∑ pafter
    m8v8+ m10(0) = (m8+m10)vaft
       ⇒     vaft = m8v8/(m8 + m10)

 = (880/1880)v8
      ⇒     vaft = .468v8.

We need a second expression that has vaft in it.  We know something
about what happens to the energy in the system after the collision, so using
the modified conservation of energy approach for the time interval after the
collision up to the complete standstill point, we get:

     KE1               + ∑ U1  + ∑ Wex  = KE2 + ∑ U2

    (1/2)(m8 + m10)vaft
2 +   (0)      - fkd       =   0    +   0.

The frictional force fk is due to m10's brakes locking (m8's brakes are
assumed to remain unlocked).  N.S.L. suggests that the normal force on m10
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in this case is m10g and that the frictional force is µ kN10 = µ km10g.
Substituting this into the above expression and solving for vaft yields:

(1/2)(m8 + m10)vaft
2 - fkd = 0

   ⇒    (1/2)(m8 + m10)vaft
2 = µ km10gd

vaft
 = [2µ km10gd/(m8 + m10)]1/2.

Substituting vaft = .468v8 from above into this expression yields:

vaft
 = [2µ km10gd/(m8 + m10)]1/2

      .468v8
 = [2µ km10gd/(m8 + m10)]1/2

      ⇒     v8 = [2(.6)(1000 kg)(9.8 m/s2)(1.2 m)/(1880 kg)]1/2/(.468)
⇒     v8 = 5.85 m/s.

7.34)  The man's initial momentum is in
the x direction.  The woman's initial
momentum is in both the x and y direction.
During the collision, the only forces acting are
internal to the two-person system.  This means
momentum will be conserved in both the x
and y directions through the collision.
Remembering that the two individuals stick together (it is a perfectly inelastic
collision), we can approach the problem by looking independently at what has
happened to the system's momentum in the x direction, then y direction.
Assuming the final velocity of the two is vx in the x direction and vy in the y
direction, we can write:

x direction:

 ∑ pbefore,x             =            ∑ pafter,x
    pman before,x     +   pwoman before,x                  = pman after,x + pwoman after,x
mm(vman before,x) +     mw(vwoman before,x)        =     mm(vx)    +      mw(vx)

  (90 kg)(8 m/s)   + (55 kg)[(-10 m/s)(sin 30o)]  =  (90 kg)vx + (55 kg)vx
 ⇒     445 = 145vx
    ⇒     vx = 3.07 m/s.
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y direction:

 ∑ pbefore,y             =            ∑ pafter,y
    pman before,y     +   pwoman before,y                  = pman after,y + pwoman after,y
mm(vman before,x) +     mw(vwoman before,x)        =     mm(vy)    +      mw(vy)

  (90 kg)(0 m/s)   + (55 kg)[(10 m/s)(cos 30o)]   =  (90 kg)vy + (55 kg)vy
 ⇒     476 = 145vy
    ⇒     vy = 3.28 m/s.

The final velocity of the two as a vector will be:

vfin = (3.07i + 3.28j) m/s.

7.35)  Momentum is conserved "through the one-dimensional firing of the gun"
(see sketch).  As such, we can write:

∑ pbefore,x = ∑ pafter,x
        pboth     = pgun + pball
                (mg + mb)vo = mgvg - mbvb

  (2.04 kg)(5 m/s) = (2 kg)vg - (.04 kg)vb
       ⇒     vg = (.04vb + 10.2)/2

         = .02vb + 5.1 (Equation A).

The spring is ideal so no energy is lost in the gun's firing.  Using conservation of
energy through the firing yields:

(1/2)mgvo
2 + (1/2)mbvo

2 + (1/2)kx2 = (1/2)mgvg
2 + (1/2)mbvb

2.
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Dividing out the 1/2's:

 (2 kg)(5 m/s)2+ (.04 kg)(5 m/s)2+ (120 nt/m)(.15 m)2 = (2 kg)vg
2+ (.04 kg)vb

2

    ⇒    53.7 = 2vg
2 + .04vb

2.

Substituting Equation A in for vg, we get:

     53.7 = 2(.02vb + 5.1)2 + .04vb
2.

Expanding yields:

     .0408vb
2 + .408vb - 1.68 = 0.

The Quadratic Formula yields:

vb = [-.408 + [(-.408)2 - 4(.0408)(-1.68)]1/2]/[2(.0408)]
     = 3.13 m/s or -13.13 m/s.

Assuming for the moment that the solution is 3.13 m/s, Equation A will
give us the gun's velocity:

vg = .02vb + 5.1
     = .02(3.13) + 5.1
     = 5.16 m/s.

Assuming for the moment that the solution is -13.13 m/s, Equation A
will give us the gun's velocity:

vg = .02vb + 5.1
     = .02(-13.13) + 5.1
     = 4.84 m/s.

The physical significance of a velocity calculated to be negative, given
that we have unembedded the signs on all the velocity terms (hence making
them magnitudes), is that the direction of motion has been assumed
incorrectly.  Vb was assumed to move to the left relative to the ground (i.e.,
in the negative x direction).  It is possible we could have been wrong.  That
is, if the spring had been weak, it would have ejected the ball out the back
of the gun, but the ball could have trailed the gun moving slower than the
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gun but nevertheless to the right in the POSITIVE x direction.  If that had
been the case, we would have computed a negative value for vb and the
negative sign would have told us we had assumed the WRONG
DIRECTION for vb in the first place.  That is why we had to at least try the
negative velocity value for vb in Equation A.

With vb negative, the final velocity for the GUN was in the correct
direction--to the right--but with LESS VELOCITY MAGNITUDE than it
had to start with (it started with 5 m/s velocity--vg calculates to 4.84 m/s if
vb = -13.13 m/s).  Intuition tells us that this is clearly wrong.  Conclusion?
Vb = 3.13 m/s making vg = 5.16 m/s.

7.36)

a.)  To stop the cart, Tarzan's momentum must be the same as the
cart's but opposite in direction.  Momentum will be conserved through the
collision.  If the system is to be brought to absolute rest (i.e., zero momen-
tum) after the collision, we can write:

     ∑ pbefore,x                 = ∑ pafter,x
          (pj + pc)                       +   pT      = 0
       (mJ + mc)vc                    - mTvbot  = 0
       (40 kg + 190 kg) (11 m/s) -  90vbot   = 0

         ⇒      vbot = (230 kg)(11 m/s)/(90 kg)
    = 28.1 m/s.

This is the velocity at which Tarzan must move to stop Jane and the
cart dead in their tracks.

With this velocity, we can calculate how much energy Tarzan needs at
the bottom of his arc.  Using conservation of energy, we can determine how
much of that energy will come from the freefall and how much must come
from the run.  Using that approach, we write:

KEtop       + ∑ Utop     + ∑ Wext =     KEbot        + ∑ Ubot
(1/2)mTvtop

2 + mTghtop  +   (0)      = (1/2)mTvbot
2 +   (0)

 ⇒     vtop
2 = vbot

2 - 2ghtop
        = (28.1 m/s)2 - 2(9.8 m/s2)(38 m)

      ⇒     vtop = 6.7 m/s.
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b.)  The f.b.d. to the right shows tension up and weight
(i.e., mg) down.  Using N.S.L. to sum the forces in the
CENTER-SEEKING DIRECTION, we get:

  ∑ Fc :

 T - mTg = mT(v2/r)

       T = mTg + mTvbot
2/R

= (90 kg)(9.8 m/s2) + (90 kg)(28.1 m/s)2/(19 m)
= 4622 nts.

This is over five times Tarzan's weight of 882 newtons.

7.37)  Because this is essentially a collision problem, and because the only
force acting (gravitational attraction between the two bodies) is internal to the
system, momentum will be conserved in this problem.  The difficulty lies in the
fact that the planet is huge in
comparison to the satellite.  That is,
the momentum of the planet will
only change minusculely due to its
size.  In short, using conservation of
momentum really won't work here.

There is a clever way to ap-
proach the problem, though.
Consider it from a center of mass
frame of reference.

In the free-space frame (i.e., a
frame that is stationary relative to
both the planet and satellite), the
motion of the center of mass and the
motion of the planet will, for all
intents and purposes, be exactly the
same (almost all of the mass in the
system is in the planet).  That
means that in the center of mass
frame, the planet will appear
stationary.  It additionally means
that the satellite's incoming velocity in that frame (i.e., in the center of mass
frame) will be vs,cm = 7 km/s + 12 km/s = 19 km/s.

If the so-called collision is elastic, energy will be conserved.  That means the
satellite will leave the collision with the same amount of energy, hence same
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velocity, as it entered with . . . FROM THE PERSPECTIVE OF THE CENTER OF
MASS FRAME.

Relative to space (i.e., the lab frame), the velocity of the center of mass and
the velocity of the planet are both 12 km/s.  That means the velocity of the satel-
lite, relative to space, will be:

vs = vcm + vsat.rel.to cm
= 12 km/s + 19 km/s
= 31 km/s.

In other words, the satellite will come into the situation moving with velocity
7 km/s and will leave after interacting with the planet with velocity 31 km/s.  This
slingshot was used by NASA to boost the speed of both Voyager spacecrafts as
they passed by Jupiter.
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